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Abstract 

In data regression, an important role is played by the least trimmed squares (LTS) estimate, which is less sensitive to the outliers than 

some other estimators such as the least squares estimator. However, estimating the LTS in nonlinear regression would be unimaginable 

expensive. For the data set with size m and outliers mm ~ , it would require m
mC
~

 nonlinear least squares regressions. To solve this 

problem, this paper studies the LTS solution from an optimization point of view, and proposes truncated aggregate homotopy algorithm 

to the equivalent min-min-sum programming. Numerical tests with comparisons to some other methods show that the new method is 
efficient. 
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1 Introduction 

 

Since the least squares estimator, 1l , 2l and l are affected 

by wild observations in data regression, Rouseeuw 

proposed a least trimmed squares (LTS) estimator in [1], 

which is robust with respect to outliers and applied in 

many applications. Consider the nonlinear regression 

model: 

,,,2,1,),( mirxvfu iii   (1) 

where iu represents the dependent variable, ( , )if v x is a 

regression function and ir is the error item. The LTS 

estimator is defined as: 

2

( )

1

arg min ( ),
n

i m

i i
x R

i

x r x





   (2) 

where the squared residuals are ordered from the smallest 

to the largest 

2 2 2

(1) (2) ( ) .mr r r    

This is equivalent to finding the m -subset with 

smallest least squares objective function. For the linear 

LTS regression, several algorithms have been proposed to 

compute the estimator exactly. The currently fastest exact 

algorithm is proposed by Agullo based on a branch-and-

bound technique that selects the optimal n-subset without 

exhaustive evaluation. The BAB algorithm is 

computationally feasible for data sets with 50m   and

5n  . But for most data sets the exact algorithms would 

take too long, and the approximate algorithm should be 
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used. The most used one is PROGRESS proposed by 

Rousseeuw and Leroy in [2] and developed in [3]. Given a 

data set, the PROGRESS algorithm examines several n-

subsets or elemental sets. For each elemental set, 

calculates its exact fit of the least squares estimator and the 

fit with the smallest objective function value provide an 

approximate LTS estimate. For the nonlinear LTS 

estimator, i.e., ( , )u f v x  is nonlinear with respect to x , 

the exact solution has to find the LS fit for all m -subsets, 

which would involve an unmanageable computation cost. 

The PROGRESS algorithm can also provide rough 

solution by examining several random m -subsets, but the 

algorithm has to be repeated in a large number of times to 

obtain approximate solution.  

In this paper, we study the LTS solution from an 

optimization point of view. Firstly, the LTS model is 

converted to min-min-sum programming equivalently. 

Then use the aggregate homotopy method (see [12] for 

details) to solve the nonsmooth problem. To reduce the 

computation cost in tracing homotopy curve, we adopt a 

truncated aggregate smoothing technique, which was 

proposed in [4] and [5] for solving min-max problems. 

Moreover, we give some new truncating criterions, for 

adaptively updating the subset to guarantee the local 

quadratic convergence of the correction process with as 

few computational costs as possible. 

The paper is organized as follows. In Section 2, the 

truncated aggregate homotopy method for LTS regression 

and its convergence are presented. In Section 3, the test 

results are given. 
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In the following, for ( ) : ,n qg x R R denote 

1( ) ( ( ), , ( ))T

qDg x g x g x   , where ( ) n

jg x R  is the 

gradient of ( )jg x . Finally, the symbol #( )I denotes the 

capacity of set I . 

 

2 Least trimmed squares in nonlinear regression 

 

It is obviously that LTS regression (2) is equivalent to 

2

( )min{ ( ) min ( )},
n i

I Sx R
i I

F x r x




   (3) 

where { q {1,2, , } | #( ) }S I m I m    . The first order 

optimal condition is: 

Proposition 1 ([1]) Suppose that ( )ir x  is continuously 

differentiable, Equation (3) obtains minimum at *x , then 

there exists 0I  , such that: 

*

2 *

( )

( ) 0,I i

i II S x

r x


    

*( )

1,I

I S x




  

where 
* 2 * *( ) { | ( ) ( )}.i

i I

S x I S r x F x


    

For this nonconvex and nonsmooth problem, an 

aggregate function, which was proposed by Li in [6], can 

be used to smooth the objective ( )F x  such as 

,/)(expln),( 2
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where 0t  is a smoothing parameter, and: 

( ) ln ( , ) ( ).m

mF x t C F x t F x    

Then, aggregate homotopy method can be adopted to 

solve this problem. 

Theorem 1 ([7], Theorem 3) If 
2 ( ) ( 2)p

ir x C p   

satisfying the following assumption 1: There exist 0M  ,
nx R , such that for all x x M  , it has: 

2 ( ) ( ) 0, 1,2, , .T

ir x x x i m      (5) 

Choose a small constant (0,1]  , then for almost all

0 nx R , aggregate equation: 

0

0( , ) (1 ) ( , ) ( ) 0,xx
H x t t F x t t x x       (6) 

determines a smooth curve  , which starts from 
0( ,1)x  

and approaches to the plane 0t  . Moreover, if 
*( ,0)x  is 

a limit point of   on the hyperplane 0t  , then *x  is a 

KKT point of Equation(3). 

The Predictor-Corrector method (see [8] for details) is 

usually adopted to numerically trace the homotopy path 

.  Moreover, to reduce the computation cost, we 

proposed a truncated aggregate homotopy method to trace 

the homotopy path efficiently for nonlinear programming 

in [5]. Here, we can also use the truncated aggregate 

technique. For given nx R , choose a parameter 0  , 

denotes: 

2 2

( )q( , ) { | ( ) ( ) , q}i mx i r x r x i     , (7) 

{ q( , ) | #( ) }S I x I m   . (8) 

The truncate aggregate function with respect to q( , )x 

is defined as 

./)(expln),( 2
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For conciseness, we write ),(q=q  x . 

At first, we give some estimates of difference between 

aggregate function Equation (4) and truncated aggregate 

function Equation (9), which are important for the efficient 

implementation of our algorithm. Denote 
2

q

( ) max ( ) ,o i

i

A x r x


  2

1
q

( ) max ( )i
i

A x r x


  , 

2 2

2

q

( ) max ( )i

i

A x r x


  . 

Corollary 1 Suppose that ( ),ir x  qi , are continuously 

differentiable. For any given ,nx R  0 1t  , 0  , let 

( , )F x t , q  and ( , )SF x t  be defined as in Equations (4), 

(7) and (9). Then the following error estimates hold: 

(i) 0 ( , ) ( , ) ( 1)exp( / )S m

mF x t F x t t C t     ; 

(ii) 12 ( )( 1)
|| ( , ) ( , ) ||

exp( / ) 1

m

S m

x x m

m

mA x C
F x t F x t

t C


  

 
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(iii) 
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(iv) 
1)/exp(
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(v) 
2

0 1

2

6( 1) ( ) ( )
|| ( , ) ( , ) ||

(exp( / ) 1)

m

S m

xt xt m

m

C m A x A x
F x t F x t

t t C


  

 
. 

Proof Here we give the proof for items (i)-(ii), and others 

can be proofed similarly or refer to the Corollary 3.1 in [5]. 

For conciseness, denote 
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2( , , ) exp(( ( ) ( )) / ).i

i I

G x t I F x r x t


    

Then: 

( , ) ( , ) ln(1 ( , , ) / ( , , )) 0.S

I S S

F x t F x t t G x t I G x t I
 

    

Since there exists at least one I S  satisfying 
2( ) ( ) 0i

i I

F x r x


   , hence: 

( , , ) 1
I S

G x t I


 . (10) 

By the definition of S  in Equations (7) and (8), for all

I S , it has: 

1
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Then: 

( , , ) ( 1)exp( / )m

m

I S

G x t I C t


   . (11) 

Substituting equations (10) and (11), together with

ln(1 ) ( 0)x x x   , we obtain: 

( , ) ( , ) ( , , ) ( 1)exp( / )S m

m

I S

F x t F x t t G x t I t C t


     . 
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We first estimate the upper bound of: 

| ( , ) ( , ) |S

I I

I S
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hence: 
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By the definition of S , it has: 
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From Equation (11), it obtains: 
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Then together with Equations (12) and (13), we have: 
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Now, we consider to use the truncated aggregate 

technique to trace the homotopy path   efficiently. For 

conciseness, we write ( , )v v x t . 

Algorithm 1 (Truncated aggregate homotopy algorithm) 

Data. 
0

00, , 1.nx R t      

Parameters. Initial steplength 0 0;h   tolerance
710tolt  , 

610 ,ct
  

3min{10 ,1/ };tolH t  maximum steplength 

max ;h  maximum inner iteration number ;inN  1 1,A A  are 

big numbers; errors parameters 
, , 0 , , 0{ } ,{ } .k i k i k i k i  

 
 

Step 0. Unit tangent vector 
0 , 0, 0.d k i   

(Predictor step) 

Step 1. If 0 ,k tolt t   end the procedure; else go to Step 2. 

Step 2. If 0,k  compute 
1

1
.

|| ||

k k

k k k

v v
d

v v









 If ,k ct t go 

to Step 3, else go to Step 4. 

Step 3. Set 
,0 , 0,k k k

kv v h d i    go to Step 5. 

Step 4. Let 
1

,tol k

k k

n

t t
h

d 


 and 

,0 ,k k k

kv v h d   then 

correct ,0kv  on the hyperplane .tolt t  

(Corrector step). 
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Step 5. If , [0,1],k it   0.5 ,k kh h set, go to Step 2; else, let 

,

, , ,( , ) ( , ), , ,k i

k i k i k iv x t x t         calculate: 

, max{ , },k i      (14) 

where: 
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 (15) 

go to Step 6. 

Step 6. If tolk HvR ||)(|| , , where  

, ,0

( )
( ) ,

( )
Tk k k

H v
R v

d v v





 
  

  

 

with 0( ) (1 ) ( , ) ( ),S

xH v t F x t t x x      go to Step 7; 

else go to Step 8. 

Step 7. Set 
max1 ,

1

,

min{1.5 , }, 3,
,

, ,

kk k i

k

k

h h i
v v h

h else






  


 

1,k k  go to Step 1. 

Step 8. If ,ini N set 0.5 ,k kh h  go to Step 3; else, obtain

, 1k iv   using truncated aggregate iteration, 
, 1 , , 1 ,

, ,( ) ( ),k i k i k i k i

k kv v DR v R v 

    set 1,i i  and go to 

Step 5. 

Then, from Corollary 1, the following proposition 

holds. 

Proposition 2 Suppose that q),(2 ixri  are twice 

continuously differentiable. In Algorithm 1, for any 

iteration point v , and any error parameters , 0,    if 

is set as Equations (14) and (15) with 1 1( )A A x  and 

2 2 ( ),A A x  then it has: 

( ) ( ) ,H v H v  ‖ ‖  (17) 

( ) ( ) .DH v DH v  ‖ ‖  (18) 

Proof: Since: 

1( 1)(2(1 ) )
ln max ),1 ,

m

mC t mA
t






    
     

  
 

the following inequality holds: 

1)

12(1 ) ( / (exp( / ( )) 1) .m m

m mt mA C t C      

According to Corollary 1, we have: 

),1))/(/(exp()((~2)1(

)),(),()1()()(
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S
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CtCxAmt

txFtxFtvHvH
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
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Since 1 1( )A A x , it immediately follows from 

Equations (20) and (21) that ( ) ( ) .H v H v  ‖ ‖  

Similarly, the assertion ( ) ( )DH v DH v  ‖ ‖  also 

holds. 

The global convergence proofs for PC algorithms have 

been given in [8-11] and some other papers. Moreover, 

under some proper assumptions, the local quadratic 

convergence of corrector step with truncated aggregate 

technique was also discussed in [5]. Here, we only give the 

convergence results, and the proofs can refer to [5]. 

Theorem 2 Suppose that 
2 ( ) ( 2)p

ir x C p   satisfying 

assumption 1. In Algorithm 1, assume 
1(0)kv H  , and

( )k

kT

DH v

d

 
 
 

 is non-singular. Then there exist

, ,0 00, ,k i k ih    , such that: 

(i) The sequence 
,{ }k iv  generated by the corrector steps in 

Algorithm 1 is well defined and finite; 

(ii) For sufficiently small tolH  and ,k iv  sufficiently close 

to 1kv  , it has 
, 1 1 , 1 2( ).k i k k i kv v O v v    ‖ ‖ ‖ ‖  

 

3 Numerical experiment 

 

In this section, we give some numerical results, comparing 

Algorithm 1 (TAH) with some other algorithms, such as 

the PROGRESS algorithm and aggregate homotopy 

method (AH) in [12], to show the efficiency of our 

algorithm. 

During the computation, we set parameters 0 0.1h  , 

0.3, 0.1maxh   or 0.01,  , ,1 1, 1 2k i k ie e     for all 

1 2, , 1 2.k i N A A e    The parameters p  in PROGRESS 

algorithm is set as 10000.  All the computations are done 

by running MATLAB 7.6.0 on a laptop with AMD Turion 

(tm) 64  2 Mobile Technology TL-58 CPU 1.9 GHz and 

896M memory. 

The numerical results are reported in the following 

tables, in which *x denotes the final approximate solution, 
*F  is the value of the objective function at *x , time is the 

CPU time in seconds. 

Example 1 Rotated cone fitting [13]. We test our 

algorithm for the artificial rotated cone data points which 

are generated as that in [13]. At first, produce 30 points on 

an unrotated cone with error item, and then make rotation 

and translation to these data (see [14,15] for details). The 

final data with 6 outliers are listed in Table A1.  

Example 2 Hyperspheres fitting [16]. In this example, 

we try to fit a hypersphere to a set of points on its surface. 
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The data listed in Table A2 are distributed on a 

hypersphere in 8 dimensional space, in which 32 points are 

with slight perturbing item following Gaussian distribution 

and 8 points with strong perturbing. Denote the centre and 

radius of hypersphere as 8o R  and ,l R  respectively. 

Then the error item of iu  is 
2 2 .( )i ir u o l  ‖ ‖  

TABLE 1 The numerical results of example 1, Tx )8.0,5.1,5.1,2,1.0,1.0(0   

Method *x  
*F  time 

TAH   .521104)1.307862,0.318975,2.100411,10.125505,0.184274,(   0.040820  2.004 

AH 0.521104) 1.307862,.318975,2.100411,10.125505,0.184274,(   0.040820  12.501 

PROGRESS 0.525396) 1.318664,2.078406, 2.475498,0.002260,(0.052362,   0.278631 221.860 

TABLE 2 The numerical results of example 2, .1,)2.1,2.1,2.1,2.1,2.1,2.1,2.1,2.1( 00  lo T  

Method *o  *l  *F  time 

TAH )291455.1,,161166.1,207438.1,239475.1(   1.018385 0.096960 68.650 

AH )291455.1,,161166.1,207438.1,239475.1(   1.018385 0.096960 475.250 

PROGRESS )168995.1,,219799.1,269973.1,339223.1(   1.094665 0.234161 414.160 

 

 

 
FIGURE 1 Result of example 1. 

Results in Tables 1 and 2 show the efficiency of the 

truncated aggregate homotopy algorithm to the LTS 

estimator. Compared with some other algorithms, it 

obtains better solution in lower computation cost. And it 

can be seen from the Figure 1 that the LTS estimator 

solved by truncated aggregate homotopy algorithm is 

robust with respect to outliers. Moreover, it has been 

shown in [5] that the performance of truncated aggregate 

homotopy algorithm moderately depends on the values of 

parameters 1 2 ,, , k iA A  and ,k i . 

 

5 Conclusions 

 

LTS is a robust estimator, used to be solved 

approximatively in random algorithms such as 

PROGRESS. This paper studies the LTS solution from an 

optimization point of view and proposes a truncated 

aggregate hmotopy algorithm which has been proved to be 

more efficient than PROGRESS algorithm.  
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Appendix Data for examples 

 
TABLE A1 Data for Example 1 

)274129.2,554287.1,806534.2(1 u  )436930.3,569362.0,350218.2(11 u  )4.079642,0.697709,1.525866(21 u  

)038737.3,169156.1,021418.2(2 u  )028508.3,847094.0,481760.1(12 u  )4.021855,1.197036,1.124833(22 u  

)256676.2,057755.2,941398.1(3 u  )3.470024,1.743698,1.213677(13 u  )3.959047,1.821152,0.985255(23 u  

)791917.2,800807.0,542807.2(4 u  )3.241958 2.534250,,1.541735(14 u  )3.761449,2.423919,1.116588(24 u  

)947376.2,145537.1,594323.1(5 u  )2.515192 2.761561,,2.278532(15 u  )4.359070,3.027052,1.606764(25 u  

)810543.2,154629.2,597192.1(6 u  )3.111065 2.513519,,3.170966(16 u  )3.590662,3.187533,2.097407(26 u  

)968811.1,339835.2,471767.2(7 u  )3.727169 1.150362,,3.708687(17 u  ).3959293,.1566903,2.719968(27 u  

)613522.2,608041.1,140913.3(8 u  )3.826187 0.657566,,3.307613(18 u  )3.484840,2.888588,3.309112(28 u  

)107765.3,686322.1,495099.3(9 u  )3.963031,0.397055,2.736191(19 u  )4.077043,2.473904,83.77849(29 u  

)234812.3,879770.0,154119.3(10 u  )3.984749,0.400494,2.091500(20 u  )3.602360,1.764658,3.849329(30 u  

 

 

 



 

 

 

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12A) 86-92 Xiao Yu, Yan Zhigang 

91 

 

TABLE A2 Data for Example 2 

).3512801.036282,0.591458,1.000295,1.616242,1.360230,1.620255,1.827137,1(1 u  

).516601.616898,1.791812,1.183238,0.483823,1.115138,1.222494,1.722459,2(2 u  

).2354710.854843,1.626411,0.785896,1.603645,1.029011,1.567384,1.653892,1(3 u  

).8460871.562894,1.074043,1.434079,1.220211,1.431328,1.387279,0.987947,1(4 u  

).1748051.360835,1.196824,1.315556,1.675823,0.538461,0.816108,1.290262,1(5 u  

).3079701.101858,1.284149,1.022113,1.927266,0.413155,0.685783,1.327590,0(6 u  

).1823611.155149,1.048497,1.311673,2.714151,1.246272,1.323575,1.165515,1(7 u  

).8392600.975847,1.927850,1.011977,1.167204,1.416134,1.217852,0.831673,1(8 u  

).0754231.388405,1.702807,0.971979,1.631491,0.432122,1.418085,1.418247,1(9 u  

).4975521.023334,1.101567,1.275228,1.712868,0.606673,0.635902,1.716231,1(10 u  

)495779.1,150693.1,714438.0,955303.0,373466.1,278199.1,391991.1,328284.1(11 u  

)589740.0,977804.0,011932.1,277267.1,579511.1,391275.1,235044.1,628547.0(12 u  

)478742.1,361458.1,144766.1,835127.1,972803.0,182552.1,601350.1,541323.0(13 u  

)718817.0,865732.0,875227.1,292600.1,900065.1,445953.1,355549.1,456780.0(14 u  

)326452.1,698331.1,065213.1,281291.1,985335.0,028108.1,468949.1,614772.0(15 u  

)129426.1,392416.1,377472.1,124556.1,865495.1,718008.1,458414.1,102485.1(16 u  

)320107.1,189239.1,314183.1,952493.0,190805.1,904086.0,977239.0,378289.1(17 u  

)061356.1,262483.1,490543.1,027151.1,217858.1,053657.1,690286.0,142382.1(18 u  

)862674.1,219371.1,841929.0,288195.1,056616.1,762241.1,044617.1,640349.1(19 u  

)845923.0,795164.0,352373.1,203563.1,491942.1,588287.0,957255.0,956155.0(20 u  

)055077.1,083621.1,316290.1,774608.1,126505.1,706565.0,053821.2,579823.0(21 u  

)394656.1,873650.0,220692.1,423392.1,406587.1,503125.0,528166.0,983528.0(22 u  

)132886.1,097644.1,325782.1,347757.1,948535.0,907088.0,841913.0,081432.1(23 u  

)491111.1,059873.1,406039.1,735498.0,765878.1,544125.1,991185.0,709620.0(24 u  

)058320.1,486094.1,590017.1,856732.0,738891.0,740086.0,952351.0,164395.1(25 u  

)904337.0,301074.1,060749.1,791963.1,863073.0,522945.1,355000.1,443198.1(26 u  

)485106.1,450020.1,574294.0,568739.1,370470.1,521763.1,857176.0,740240.1(27 u  

)294884.1,031388.1,940597.1,794341.0,659943.1,960262.0,027606.1,247534.1(28 u  

)059744.1,727615.0,657427.0,474390.1,570197.1,672697.0,706268.1,255142.1(29 u  

)283986.1,840472.1,456884.1,348050.1,784380.0,205667.1,092562.1,453926.1(30 u  

)541216.1,281743.1,819289.0,996941.0,062878.1,806913.0,828746.1,616538.1(31 u  

)584830.0,639727.1,417954.1,092978.1,480548.1,549861.1,291204.1,387191.1(32 u  

)912512.0,063272.1,760855.0,295767.1,922830.0,670375.0,605401.0,638255.1(33 u  

)220608.1,841580.1,460121.1,133297.1,626389.1,149242.1,587916.1,264501.1(34 u  

)939305.0,796257.0,908378.0,382071.1,863364.1,881953.0,937540.0,119004.1(35 u  

)451297.0,843488.0,253462.1,395788.1,369251.1,860558.0,226757.1,947734.0(36 u  

)656337.1,959344.0,853219.1,968197.0,528786.0,184468.1,267644.1,260089.1(37 u  

)056483.1,993819.0,573802.0,451238.1,484691.1,849195.0,168449.1,820868.1(38 u  

)459923.1,695608.1,792952.1,117747.1,222775.1,566313.1,196598.1,361233.1(39 u  

).7571771.363394,0.784932,1.352855,0.710661,0.814362,0.024718,0.962280,1(40 u  
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